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Abstract: Lunar crescent visibility maps play an importing role 

in determining the Earth’s regions where the very young Moon 

can be spotted in the evening, thereby supporting aided or 

unaided observations and establish a lunar calendar. 

Construction of such a map requires heavy computing, since the 

visibility function based on the selected criteria must be 

evaluated for each latitude, longitude and time. Especially the 

preparation of high-resolution maps is very time consuming; 

execution times exceeding a minute are common. This paper 

proposes an analytic approach to solve the separator parabola 

function to achieve a calculation time of less than one second. 

Furthermore, the dependence of the lunar visibility on the site 

height above the sea level has been exercised; the generation of a 

topographic visibility map and the conformance of such an 

application to the existing criteria and observations have been 

studied. Benchmark among the available map software and the 

developed demonstration tool is included. 
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1. INTRODUCTION 

It is a well-known phenomenon that stars are not visible 
during the daytime. The reason is the existence of the 
atmosphere, which scatters the incoming Sun rays, thence 
causing a blue sky. The brightness of the sky during the day 
period is higher than that of the stars, inhibiting their 
visibility. Whereas the sky brightness caused by scattering 
also affects the Moon, its brightness exceeds that of the sky 
such that it can be observed in daytime. However, unlike the 
stars, the Moon is not a point source and its illuminated width 
changes periodically. When it is thinner than ca. 5’ (arc-
minutes), its apparent brightness starts to diminish; after 
about 3’ it will no more be resolvable with naked-eye before 
the Sun sets. The brightness of a thin crescent can therefore 
be sufficiently greater only than that of a twilit sky, namely at 
dusk for the waxing period (new moon) and at dawn for the 
waning (old moon). 

Although the waxing and waning crescents have analogous 
but opposite behavior, the waxing phase have been more 
important because of the religious new lunar month 
determination, which necessitates the perception of the 
crescent on the western sky. The visibility depends on both 

the lunar apparent brightness and the darkness of the sky at 
the Moon’s elevation; it can be expressed as the function V = 
f(d, b), where d and b represent the sky darkness and Moon 
brightness, respectively. Recent researchers use the parameter 
ARCV (Arc of Vision) for d, and W (crescent width) for b, 
such that V = f(ARCV, W). Yallop [1] and Odeh1 [2] defined 
the visibility function at the “best time” as2: 

V = ARCV + 6.3226*W - 0.7319*W
2 
+ 0.1018*W

3 
- k 

Here, ARCV is in degrees and W in arc-minutes. Özlem 
argued that Sun and Moon elevations should be processed 
independently in order to calculate the darkness correctly 
throughout the whole possible elevation range [3]. So he split 
ARCV into M and S, namely the (topocentric) Moon and the 
Sun elevation angles, respectively; where ARCV ≈ M − S + 1. 
He then defined the visibility at the sea level as: 

V = -0.28/tan(M+1.5) – S + 6*√W - 4.9 

Here the darkness parameter d becomes nonlinear. 
Nevertheless, since he defined the “best time” of visibility as 
when M = 2.5, then ARCV = 2.5 − S + 1 and thus his 
criterion can be expressed as: 

V = ARCV + 6*√W - k 

Here k depends on the sight height above the sea level, 
since he included a correction term to compensate for the 
higher darkness at increased elevation3. 

For the determination of any lunar month, it is important to 
know when, where and how the maiden crescent becomes 
visible. The lunar visibility depends both on time t and 
position P (latitude φ and longitude ℓ), such that we may 
define the visibility in another way as V = f(P, t), where P = 
{φ; ℓ}. The crescent width W is a function of time only4, 
                                                           

1 Odeh prefers the topocentric arc of vision, which is nearly 1° less than 
ARCV due to the Moon’s parallax, which should be accounted for. 
2 Constant term k is 11.8371 for Yallop and 8.1651 for Odeh. 

3 For best visibility, k = 0.28/tan(2.5+1.5)+2.5+1+4.9 ≈ 12.4 at sea level, 
11.4 at 1,000m altitude and 10.4 at 4,000m above sea level. 
4 The topocentric width does depend on the position, or rather on M; 
however, the change is neglected since M is nearly constant at best visibility. 



whereas ARCV varies with both time and position. The 
threshold for visibility V0 changes according to the method of 
observation. The unaided (naked-eye) visibility limit will be 
higher than the aided (with binocular or telescope), that is a 
higher V0 value is necessary for the naked-eye observation. In 
general, the condition V(P, t) ≥ V0 must be satisfied for the 
lunar visibility. 

2. CRESCENT VISIBILITY MAP 

The definition for the beginning of a religious month is the 
physical observation of the new crescent on the west horizon 
after sunset, upon which the 1st day of the new lunar month 
starts. The moon-sighting may be divided into three 
categories, namely local, regional or global [4]. Local 
sighting requires that the crescent is actually witnessed on the 
district; every region is liable to its own observation and the 
start date of a month may differ among the countries. 
Regional sighting, on the other hand, accepts that if authentic 
moon-sighting news comes from neighbor areas, then local 
sighting is no more determinative. The positive witness 
information should come until the beginning of the local isha 
time or, at most, until its preferred end (one third of the night 
or midnight). The global sighting approach is an extended 
interpretation of this thought; if the new crescent has been 
attested in any location of the world, then the entire world 
will ratify the start of the month. Under this admission, an 
International Hijri Calendar for the unification of fasting and 
pilgrimage could be established [5]. 

Whether to rely on the local, regional or rather global 
moon-sighting, it will be necessary to know at which places 
on Earth the maiden crescent becomes detectable. The 
preferred method is to prepare a world map, generally with 
Mercator projection, showing the areas where the crescent is 
visible. The map is generally constructed for 24 hours 
following the first appearance; but extended (two-day) maps 
are also common. The production of a visibility map involves 
lengthy and tedious calculations; the visibility should be 
computed for every pixel of the map. Since V = f(P, t), the 
visibility function is to be evaluated by scanning all the three 
dimensions, i.e. the latitude, the longitude and the time. Any 
visibility map software therefore needs many seconds, 
sometimes several minutes to complete the map, depending 
on the required resolution. Some benchmark results are 
presented in the Conclusion section. 

Within the computation algorithm, if the time is 
incremented as the highest rank, then the time-dependant 
parameters like the crescent width, Earth/Moon declination 
and right ascension values are computed once for each time 
increment. Time interval depends on the resolution of the 
map; since the earth rotates 0.25° every minute, it will be a 
proper choice to select the time slice as 1 minute for a 

1440x720 map. For a 720x360 map in contrast, an interval of 
2 minutes should suffice. Note that the computing effort is 
therefore proportional to the cube of the resolution; i.e. an 8-
fold calculation time will be necessary for the former map. 
The next step will be to scan in the latitude & longitude, and 
check whether the output of the visibility function exceeds the 
set threshold. The confined area with V ≥ V0 shows then the 
instantaneous visibility for any specific time t. If the Moon 
brightness is under a certain limit, i.e. W < W0, the crescent is 
not visible on any point of the world, so the map will be 
empty. As the time is incremented, the visibility first starts on 
a single point whenever W = W0 at time t0 and then the area 
grows vertically and westward, like a “Big Bang”. Figure 1 
shows the visibility maps for Sha’ban 1410, obtained by the 
tool Ehille (p = 30%, H = 1,500m). The global visibility 
commences on February 25th, 1990 at 23:14 GMT on the 
location P0 = {40.0°N; 76.4°W}. The crescent remains 
visible (V > V0) within the red area only and it is not visible 
(V < V0) outside. Hence, on the contours of the red-painted 
region, V = V0. The upper map is an earlier snapshot, just 30 
minutes after t0, whereas the lower map is taken after 5.5 
hours. 

 

 

Figure 1 – Instantaneous Visibility Maps for Sha’ban 1410 

The tiny white dot (encircled in green) within the red 
region on the upper map is the location of observation 



(35.6°N / 83.5°W) by John Pierce, who still owns the world 
record for naked-eye observation. Note that the horizontal 
width at that point is rather tight and the crescent was visible 
for ca. 15 minutes only. 

The final visibility map is constructed by cumulating all the 
instantaneous areas, as shown in white/cyan in Figure 1. The 
shape resembles a parabola, with the apex on the point of first 
visibility P0, broadening to west. The locations inside this 
pseudo-parabola start the lunar month on that evening and 
those outside wait for another day, if they adopt local moon-
sighting. For regional sighting, locations outside but near the 
parabola may also start the new month. In case of global 
sighting, the whole world should start the month if the 
crescent becomes visible on the American west coast 
(generally before midnight GMT); otherwise the following 
day is the 1st. However, on some of the far-eastern countries, 
dawn may have already started at the time the crescent is just 
visible on the west-coast of the America, so it is also logical 
to divide the world into several regions [6]. 

Different threshold values have been selected by the 
researchers in order to specify various observation conditions. 
Yallop preferred the following categories along with the 
associated V0 values5: 

(A) Easily visible:    +2.16 

(B) Visible under perfect conditions:  −0.14 

(C) May need optical aid:   −1.60 

(D) Will need optical aid:   −2.32 

(E) Not visible with a telescope:  −2.93 
above Danjon limit 

Odeh, in contrast, divided the visibility range into three 
zones, by combining Yallop’s (B) and (C) zones into a single 
one (B): 

(A) Visible by naked eyes    +5.65  

(B) Visible by optical aid:   +2 
 could be seen by naked eyes 

(C) Visible by optical aid only:   −0.96 

Note that the constant offset values (k) are different for 
Yallop and Odeh by 3.672, such that the naked-eye thresholds 
differ in fact just by 0.072. Similarly, the first threshold (A) 
differs only by 0.182. However, Odeh widened the area 
visible by optical aid, considering some recent observations, 
by 2.312. Özlem, on the other hand, stated his formula for the 
border of 50% probability with the naked-eye [3], which 
corresponds to V0 = 0 (Yallop). He didn’t make any 
clarification about the optically aided visibility. 

                                                           

5 Here, Yallop’s threshold values are multiplied by 10 since they were 
divided by ten in their original equations. 

Below are presented sample visibility maps showing 
multiple zones in various colors. Figure 2 (top) is a 0.25° 
resolution map prepared by using Yallop’s criterion; whereas 
Figure 2 (bottom) is a 2° map produced with the software 
Accurate Times by Odeh. Note that the limit for unaided 
visibility is nearly identical for both maps (compare 
cyan/yellow border on the upper map with purple/blue on the 
lower), but the aided one is extended by Odeh (compare 
yellow on the upper with blue on the lower). Besides, the first 
threshold (A) is very similar (compare both green areas on the 
most-left side), as explained above. 

 

 

Figure 2 – Visibility Maps for Safar 1440 

3. POINT of BEST VISIBILITY 

The unique position P0 for a specific threshold V0 is the 
initial location where the moon becomes visible at t0. This 
point is the apex of the associated parabola, where the 
visibility is at maximum. So the apex of each succeeding 
parabola with threshold Vn is actually the best position Pn 
(with the highest global visibility) on the Earth for that 
specific time tn. If we combine all these points for each 
incremented time tn, we end up with a Best Visibility Line 
(horizontal red line in Figure 2, top). This line is the quasi-
mid line of every parabola on the map. We will define the 
functions Pb(t) and Vb(t), which express the best visibility 
position and the visibility value at that position, respectively. 



The position consists of the best latitude and the best 
longitude such that Pb(t) = {φb(t); ℓb(t)}. 

The best visibility value & position can be obtained by 
taking the partial derivative of the visibility function, ∂V/∂P. 
The maximum (best) visibility value will be reached when the 
partial derivative becomes zero at a certain position. 
Remembering that V = f(ARCV, W) and also it was former 
stated that not the crescent width but the Arc of Vision 
depends on position, the best visibility should occur when 
ARCV is maximum. Using spherical orthogonality, ARCV 
can be expressed as: 

ARCV = acos(cos(ARCL) / cos(DAZ)) 

ARCL (Arc of Light), which is actually the Sun-Moon 
elongation, does not depend on position, thus ARCV will be 
maximum when the only position-dependent parameter DAZ 
(delta azimuth) is zero; ARCV equals to ARCL in that 
situation and the best visibility can be found by replacing 
ARCV by ARCL in the visibility equations. For the criterion 
by Özlem, as example: 

Vb(t) = ARCL + 6*√W
 
- k 

The global visibility starts when Vb(t) ≥ V0, so it is 
superfluous to scan the latitude & longitude dimensions 
before this condition is met. 

On the best global visibility position Pb(t), DAZ will be 
zero, so the Moon and the Sun are positioned strictly vertical, 
as shown in Figure 3. 

 

Figure 3 – Best Position Trajectories 

The general azimuth/elevation formula, using spherical 
trigonometry, is: 

sin(δ) = cos(a)*cos(e)*cos(φ)+sin(e)*sin(φ) 

Here, δ stands for declination, a shows the azimuth 
(horizontal angle) and e denotes the elevation (vertical angle). 
We can write this equation both for the Moon and the Sun: 

sin(δm) = cos(am)*cos(em)*cos(φ)+sin(em)*sin(φ) 

sin(δs) = cos(as)*cos(es)*cos(φ)+sin(es)*sin(φ) 

 DAZ = am - as 

ARCV = em - es 

Since the difference of the Moon and Sun vertical angles 
equals to ARCV, they can be individually calculated, using 
the “best time” rules. For Yallop / Odeh, 4*em = −5*es and for 
Özlem, em ≈ 3.5, where em and es represent the (geocentric) 
Moon and Sun elevations, respectively. For the special case 
of best visibility, where ARCV = ARCL and DAZ = 0: 

am = as 

em - es = ARCL 

To obtain the best visibility latitude φb, we equal the Moon 
and the Sun azimuth using the azimuth/elevation formula: 

  acos((sin(δm)-sin(em)*sin(φb))/cos(em)/cos(φb)) = 

acos((sin(δs)-sin(es)*sin(φb))/cos(es)/cos(φb)) 

After truncation: 

   (sin(δm)-sin(em)*sin(φb))/cos(em) = 

 (sin(δs)-sin(es)*sin(φb))/cos(es) 

sin(φb) = (sin(δm)*cos(es)-sin(δs)*cos(em)) / 
        (sin(em)*cos(es)-sin(es)*cos(em)) 

The denominator in the above formula is nothing but 
sin(ARCV) which is equal to sin(ARCL) here, so the final 
equation becomes: 

sin(φb) = (sin(δm)*cos(es)-sin(δs)*cos(em))/sin(ARCL) 

The best latitude φb for any given time t is hence obtained 
by this simple formula:  

φb = asin((sin(δm)*cos(es)-sin(δs)*cos(em))/sin(ARCL)) 

If we look closer into Figure 3, we can see that an 
orthogonal triangle can be formed with the Sun-Moon line as 
hypotenuse. This triangle is sketched in Figure 4, with the red 
side parallel to the ecliptic and the blue side vertical to the 
ecliptic. The lower angle is then the best latitude φb. Note that 
the blue side is the difference of the Moon & Sun declinations 
(δm – δs), and the red side is the difference of their right 
ascensions (αm – αs). This is a spherical triangle where the 
sides are circular arcs. If it were a plain triangle with linear 
sides, then we could calculate the best latitude (in radians) 
simply by dividing ∆δ by ARCL (sine-rule). In fact, also the 
above formula implies this fact when we replace cos(dγ) = 1 
and sin(dγ) = dγ, since a spherical triangle with infinitesimal 
angles transforms into a plain one. 



 

Figure 4 – The Orthogonal Triangle 

The following equations are applicable to find the 
associated best longitude ℓb: 

ℓ = ω - GMST + α 

sin(e) = cos(ω)*cos(δ)*cos(φ)+sin(δ)*sin(φ) 

Here, GMST is the Greenwich Mean Sidereal Time in 
degrees, ω shows the local hour-angle, which should be 
negated for the case of a waning crescent, and α stands for the 
right-ascension. As such, ℓb can be obtained by: 

ℓb = ±acos((sin(em)-sin(δm)*sin(φb))/cos(δm)/cos(φb)) 
     - GMST + αm 

Of course the Sun parameters es, δs and αs may be used 
instead and the following equation is valid as well: 

ℓb = ±acos((sin(es)-sin(δs)*sin(φb))/cos(δs)/cos(φb)) 
     - GMST + αs 

Calculation of GMST, αs, δs, αm, δm, ARCL and W for any 
time t is given in the Appendix section. 

4. PARABOLA FUNCTION 

We denoted the time of the first visibility as t0, at which 
time V = V0 and the crescent with W0 is only visible on a 
single point P0, namely the best visibility point for that 
threshold. As the time passes over, the crescent gets thicker 
(W > W0) and the Moon becomes visible on a small vertical 
band (red zone in Figure 1) around the Best Visibility Line. 
The visibility drops as moved from the mid-line up and down 
to the edges of the parabola; on the parabolic line V = V0 and 
at the outside V<V0. DAZ on the other hand, which is zero on 
the mid-line, will increase as moved away from the line. For a 
specific time tn > t0, the maximum DAZ within the visible 
region, denoted as DAZn, will be reached at the visibility 
margin (on the parabolic line). Because ARCV is orthogonal 
to DAZ, it will be at minimum on that visibility border and it 
is denoted as ARCVn. If the mid-line (maximum) visibility at 

tn is labeled as Vn, then the visibility difference ∆V between 
the mid-line and the contour will be equal to the increase of 
the best visibility from the time t0 to tn, which can be written 
as: 

∆V = Vn – V0 

But since the visibility V at a certain time is directly 
proportional to ARCV because W is constant (see the 
visibility functions described by Yallop, Odeh and Özlem), 
∆V = ∆ARCV. So the Arc of Vision on the contour must be 
∆V smaller than that on the Best Visibility Line6, which is 
ARCL. Therefore we may find DAZn: 

∆V = Vn – V0 = ARCLn - ARCVn 

ARCVn = ARCLn - ∆V = ARCLn – (Vn – V0) 

DAZn = acos(cos(ARCLn) / cos(ARCVn)) 

Since DAZn is the difference of the azimuths between the 
Moon and the Sun, the corresponding latitude where this 
DAZ appears could be found using the general 
azimuth/elevation formula: 

DAZ =  acos((sin(δm)-sin(em)*sin(φ))/cos(em)/cos(φ)) 
     - acos((sin(δs)-sin(es)*sin(φ))/cos(es)/cos(φ)) 

 Unfortunately, the former truncation is no more possible in 
this case and the extraction of the latitude becomes much 
strived. Instead, we will try to solve the problem using the 
spherical orthogonal triangle (green-painted in Figure 5) with 
the vertical sides DAZ / ARCV and the hypotenuse ARCL. 
The angle opposite to DAZ is the tilt angle θ, which is formed 
by rotating our preceding ∆δ / ∆α triangle in Figure 4 as to 
reach the necessary ARCVn. Therefore we may write: 

sin(θ) = sin(ARCV) / sin(ARCL) 

 

Figure 5 – Rotation of the Orthogonal Triangle 

                                                           

6 For Yallop/Odeh: ARCVn = -6.3226*W+0.7319*W
2
-0.1018*W

3
+k+V0 

   For Özlem: ARCVn = -6*√W
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Then the upper (φu) and the lower (φl) latitudes for the 
contour points of the parabola will therefore be: 

φu = φb + θ 

φl = φb - θ 

However, this assumption is only valid for plain triangles, 
not for spherical ones, so it may produce consistent results 
only for small angle values. The actual latitude values will 
hence deviate from the calculated, especially on large values 
of the angles δ, ω and θ. We will thus try to fit an empirical 
correction factor c to get coherent results: 

 φu = φb + θ * cu 

φl = φb - θ * cl 

The following coefficients produce latitude values with an 
error of typically < 1° for polar zones and < 0.5° otherwise: 

cu = cos(|δm|+0.25*cos2(ωm,u)) 

cl = cos(|δm|+0.25*cos2(ωm,l)) 

The hour-angle values for the upper (ωm,u) and the lower 
(ωm,l) points depend on the latitudes φu and φl, respectively, 
which provokes recursion. But the time increments are 
sufficiently small during the build-up of the parabola such 
that the hour-angles change very little in-between. So we may 
use here the hour-angle of the previous sample, which has 
already been computed to find the longitude value. This 
technique significantly reduces the execution time. The next 
calculated sample of φu may become lower than (or φl may 
become higher than) the previous sample because of the 
change in the hour-angle, which should be inhibited by the 
limiting min/max functions to prevent oscillations. 

If a higher accuracy is necessitated, the latitude values 
obtained hereby should be inserted back into the DAZ 
equation and then fine-tuned in a recursive manner; however 
this measure will increase the amount of computation. 
Additionally, the initial time increments near the apex may be 
kept smaller to produce a smoother curve, since the parabola 
widens very fast at start. 

On the polar zones, the Sun and/or the Moon might not 
reach the necessary elevation as required by the best-time 
rule. At the poles, the Sun & Moon trajectory becomes 
horizontal, which can be visualized by tilting the orthogonal 
triangle in Figure 4 such that the red side becomes horizontal 
and the blue side vertical. In this case em = δm and es = δs for 
the North Pole (em = −δm and es = −δs for the South Pole) thus 
ARCV = ∆δ. Hence a crescent may only be visible at the 
North Pole, when δm > 0, δs < 0 (opposite for the South Pole) 
and ∆δ sufficiently big. Criteria incorporating solely the Arc 
of Vision as the sky illumination parameter produce 
erroneous results within the polar region; generated parabolas 

usually include one of the poles, therefore the parabolas are 
cut near the polar zone (Figure 2). Indeed on the 1st of Safar 
1440 for example, the Sun & Moon are both over the horizon 
at the South Pole, nearly at 7° elevation, such that it is 
impossible for the crescent to be distinguished. Extended 
Crescent Visibility Criterion on the other hand, uses separated 
M and S parameters, whereby it becomes still possible to 
define visibility at those extreme regions. The latitude values 
computed analytically using the above equations, however, 
will deviate from the criterion. Also here, the preferred 
correction method will be to find an empirical approximation 
instead of pixel-by-pixel calculation, in order to speed up the 
process. Following equations are applied for the cases where 
the expected Moon elevation is not achievable, which is 
characterized by |cos(ωm)| > 1: 

φu’ = 0.15*φu+0.85*asin(sin(δm+90°-em))  »  cos(ωm,u)>0 

φu’ = 0.35*φu+0.65*asin(sin(δm+90°-em))  »  cos(ωm,u)<0 

φl’ = 0.15*φl+0.85*asin(sin(δm-90°+em))  »  cos(ωm,l)>0 

φl’ = 0.35*φl+0.65*asin(sin(δm-90°+em))  »  cos(ωm,l)<0 

Note that the weighing coefficients are different for 
whether cos(ωm) is positive or negative (i.e. the Moon is 
below the limiting elevation or above), basically since the 
impact of the Moon elevation to the visibility is not linear. 
Here again, min/max functions for limiting should be inserted 
to prohibit that φu’ becomes lower than (or φl’ becomes 
higher than) the previous sample. 

One example for visibility at the pole could be the 1st of 
Shawwal 1430; the crescent becomes visible at the South Pole 
when W = 0.8’ (δm = −10.5 and δs = 1) as per the Extended 
Crescent Visibility Criterion. Anyway, the visibility at the 
pole has not been attested by observation yet. 

5. DEMONSTRATION TOOL 

In contrast to the Windows application Ehille, which was 
produced by Özlem to demonstrate the Extended Crescent 
Visibility Criterion [3]; a WEB tool, Urcun, is designed to 
test the performance of the analytical approach explained 
herein. Urcun is written in HTML/JavaScript in order to 
achieve portability and OS independence. The date can be 
entered either as Gregorian or as Hijri. It is based on the same 
criterion by Özlem and the altitude is hence adjustable to see 
the effect of height of the sight above the sea level. Urcun can 
display the first visibility of a waxing crescent (start of 
lunation) as well as the last visibility of a waning (end of 
lunation), as shown in Figures 6 and 8, respectively. Either 
map can further be extended to view the 2nd day; i.e. the next 
day for the start of the month, or the previous day for the end 
(Figure 7). 



 

Figure 6 – First Visibility Map for Safar 1440 by Urcun 

 

Figure 7 – 2nd Day Map for Safar 1440 by Urcun 

 

Figure 8 – Last Visibility Map for Safar 1440 by Urcun 

Four distinct zones are defined for Urcun, which are 
uniquely colored on the map. The best time & position for 
each zone (apex of each parabola) is printed below the map. 
The visibility condition and the associated threshold value 
(V0) for each zone are defined as follows: 

(A) Easily visible even by naked-eye:  +1 

(B) Usually visible by naked-eye:  0 
 easily visible by optical aid 

(C) Rarely visible by naked-eye:   −1 
 usually visible by optical aid 

(D) Not visible by naked-eye:    −2 
 rarely visible by optical aid 

These conditions are valid for a clear sky (visibility range > 
20 km) with an experienced observer having good visual 
acuity. Existence of haze will adversely affect the visibility; 
the value may decrease by 1 or 2. The presence of city lights 
is also evaluated to worsen the visibility by increasing the sky 
illumination [12]. Besides are the seasonal variations an 
important factor; Schaefer computes that the critical visibility 
decreases by 0.6 in June and increases by 0.8 in December, as 
compared to equinoxes [13]. 

Unlike other criteria, the visibility thresholds V0 for Urcun 
are chosen to be simple integers, such that the visibility of 
each zone differs from its neighbors by ∆V = 1. The reason is 
that the border of zones A-B corresponds to 100% probability 
of naked-eye visibility, whereas the border of zones B-C 
corresponds to 50% and the border of zones C-D to 0%. V0 is 
set to zero for 50% probability and the spread is taken as σ = 
±1 per the Extended Crescent Visibility Criterion [3]. 

The amount of increase in visibility through the use of an 
optical aid is not agreed among the researchers. Several 
recent observations are considered to be credible by some 
authorities, whereas some others find them doubtful. Here, we 
prefer to make a simple photometric analysis to estimate this 
visibility gain: 

For a moderate crescent width value of W = 0.5’, the 
necessary Sun depression is calculated as 3.61° [3]. The 
corresponding background sky brightness LB will be 2.2x106 
nL [17]. The associated Blackwell Contrast Threshold Cth is 
then around 2.5 [18]. The contrast is defined as: 

C = (Lm- LB) / LB 

Accordingly, the Moon brightness is found as Lm = 7.7x106 
nL. Under optical magnification, the Blackwell Contrast 
Threshold will approach to zero, such that the crescent could 
be seen when the background brightness reaches almost the 
Moon brightness. The sky brightness of LB = 7.7x106 nL 
occurs when the Sun depression is nearly 2.5° [17]. This 
corresponds to 1.11° decrease in ARCV. Note that this drop 
will shrink W and thereby reduce the visibility back such that 



the effective drop will be less. The gain will be somewhat 
higher for thinner crescents and lower for thicker crescents. 
Thus, for Urcun, the 50% probability threshold for optical 
aided observations has been set at V0 = −1, which is 1° lower 
than the visibility threshold for the naked eye. 

 The simplified algorithm of Urcun is depicted below: 

At start, the tool finds the first/last day of the lunation and 
calculates the elongation at Greenwich midnight. The initial 
scan time is adjusted to approx. 2 hours before the first (or 
after the last) visibility for the outer zone. The Earth map is 
scrolled such that the first best visibility sample is located at 
the border. It then enters the time loop. For each incremented 
time, ARCL and W are computed and the visibility difference 
∆V is found. Note that the time is decremented for the case of 
a waning crescent. φb and ℓb are calculated next and the 
associated pixel is marked as to draw the Best Visibility Line. 
A negative ∆V value tells that the global visibility has not 
been achieved yet so the loop is continued until ∆V becomes 
positive. At the point of visibility onset, corresponding values 
of t, φb and ℓb are displayed. The tilt angle θ, the upper/lower 
latitudes φu/φl and longitudes ℓu/ℓl are calculated thereafter. 
The associated pixels are then marked and adjoined as to 
form the parabola. The calculations are repeated for each of 
the four zones. Logically, the number of time increments 
should be equal to the horizontal pixels of the map. However, 
the contours of the parabola move slower as they approach 
the poles, so the algorithm increments the time 2,000 times 
for the 1,440 column map and the locations outside the map 
are cropped. After the time loop has been completed, the 
painting routine starts. Here, it scans the map horizontally 
line-by-line, from right to left for the waxing and from to left 
right for the waning crescent. Color is changed every time a 
parabola contour has been crossed. The brightness of every 
pixel is adjusted to be nearly proportional to the square-root 
of the altitude at that location. 

6. TOPOGRAPHIC APPLICATION 

Dependence of the lunar visibility on the altitude has been 
mentioned in the literature [1, 8, 9, 10, 15], which was 
formulated by Özlem [3] and verified by the author after 
several land-based and airborne observations. Although 
Urcun (and its predecessor Ehille) incorporate altitude 
correction, the general effect of selecting a higher site height 
is the eastward shift of the parabolas. Nevertheless, the Earth 
surface is not uniform in altitude; therefore the assumption 
that “all terrain within a uniquely colored zone has the same 
visibility” is not true. It will be more realistic to calculate the 
visibility of each location (pixel) regarding its specific 
altitude value. Hence, Urcun includes an “auto-altitude” 
mode, where a topographic visibility map is prepared. On this 
map, the visibility of each pixel is altitude-corrected and then 

painted accordingly (Figure 9). In order not to inflate the 
execution time and thus upset the analytical derivation 
feature, the visibility is not calculated pixel-by-pixel. Instead, 
the number of zones is increased from 4 to 12 in the auto-
altitude mode, such that the adjacent zones have the visibility 
difference ∆V = 0.5. During the painting of the map, visibility 
of every pixel is found by summing its base visibility, the 
zone interpolation and the altitude correction, as such: 

V = V0 + ∆V*min(X/X0,1) + acos(6371/(6371+H)) 

X is the distance from the zone contour, X0 the mean zone 
width (60 for the 1st day and 120 for the 2nd), H the altitude. 

 

Figure 9 – Topographic Visibility Map for Safar 1440 

The enhanced visibility on highland regions can easily be 
discriminated on the topographic map. Note that the 
Himalayas, which stay considerably away from the visibility 
border in Figure 6, are included to the visible zone after 
altitude correction. Another example is Figure 10, which 
shows the visibility on the day October 13th, 2004, when the 
ICOP member Jim Stamm spotted the waning crescent 
through an 8” telescope at 2210m elevation. This was a world 
record with optical aid. The location of observation near the 
west coast of North America (32.4°N / 110.68°W) is marked 
with a tiny red dot in the figure (just below the purple Best 
Visibility Line), which indeed lies on the visibility border for 
optical aid (gray/orange contour). 

 

Figure 10 – Topographic Visibility Map for Sha’ban 1425 



To confirm the precision of the topographic process, the 
visibility maps for Sha’ban 1410 are posted in Figure 11. 
Again, the location of John Pierce has been marked with a red 
dot. Although this position is evaluated as “visible by optical 
aid only” in the upper map, it remains within the “rarely 
visible by naked-eye” region in the bottom map, after the 
topographic correction. 

 

 

Figure 11 – Visibility Map Details for Sha’ban 1410 

While Figure 10 and 11 prove the conformance of the 
Extended Crescent Visibility Criterion to observational data, 
verification against theoretical models would enhance its 
trustworthiness. The modern algorithm developed by 
Schaefer [14] primarily considers the two critical parameters, 
namely the Astronomical Extinction Coefficient and the Air-
Mass. They are influenced by geographic and meteorological 
conditions such as altitude, humidity, temperature and aerosol 
content. Victor Reijs implemented Schaefer’s algorithm and 

prepared an overlaid multiple-day visibility map of 
Ramadhan 1432 for Europe (Figure 12) [16]. The visibility 
region for the 2nd day is colored in olive, the 3rd day in violet 
and the 4th day in cyan. Corresponding 2nd and 3rd day maps 
prepared by Urcun are depicted in Figure 13 and Figure 14, 
respectively. 

 

Figure 12 – Multiple-Day Visibility Map by Reijs 

 

Figure 13 – 2nd Day Visibility Map by Urcun 

 

Figure 14 – 3rd Day Visibility Map by Urcun 

For the 2nd day, the olive/violet border in Figure 12 should 
be compared with the green/yellow border (50% probability 
of naked-eye visibility) in Figure 13. Analogously, the 
violet/cyan border in Figure 12 should be checked against the 



green/yellow border in Figure 14 for the 3rd day. The band of 
difference between the maps remains below ±1° in latitude, or 
ca. ±0.5 in visibility, despite Urcun incorporates a very 
simple criterion. This simplicity can be recognized in the 
processing speed; the 400x400 map by Reijs is reported to 
need about one hour to complete, whilst the 1440x720 map 
by Urcun is generated in less than one second. 

The crescent width is about 1.7’ on the second day and 3.8’ 
on the third. The compliance of the 2nd and 3rd day maps by 
Urcun to the Schaefer’s algorithm is a proof that the 
Extended Crescent Visibility Criterion by Özlem remains 
valid for large crescent widths (W > 1’). A Yallop/Odeh map 
in contrast, includes almost the whole Europe, framed by 
Figure 12, into the visible region of the 2nd day. 

7. CONCLUSION 

The calculation of the visibility separator parabola function 
by a simple analytical method should shrink the computation 
time heavily. In order to verify the effectiveness of this 
method, some benchmarking is performed.  Thanks to the 
analytical derivation, Urcun can complete the visibility map 
in less than one second. Comparison against some of the map 
generator software [7], namely MoonCalc, Accurate Times 
and Ehille are listed below: 

 
Resolution 

(pixels) 

Time 

(sec.) 

Performance 

Index 

MoonCalc 360 x 180 39 0.6 

Accurate Times 180 x 90 33 0.09 

Ehille 1440 x 720 113 / 50 13/ 30 

Urcun 1440 x 720 0.25 / 0.1 6000 / 15000 

 
Table 1 – Benchmarking Results 

The resolution of the map produced and the execution time 
are shown in Table 1 for each software tool. The Performance 
Index is computed by dividing the number of calculations into 
the execution time in microseconds. The number of 
calculations is found by multiplying the amount of total pixels 
by the time increments, which is assumed to be equal to the 
horizontal resolution. For the cases of Ehille and Urcun, most 
of the execution time is spent for the graphical output. 
Therefore both values, with and without graphics, are 
tabulated. As can be clearly deducted from Table 1, Urcun 
enormously outperforms all its competitors. The selection of 
auto-altitude mode albeit increases the execution speed from 
0.25 to 0.32 sec, in any case still far less than one second. 

The Extended Crescent Visibility Criterion chosen for the 
demonstration tool gives consistent results when compared to 
its alternatives, and the parabola created proves to be more 
logical throughout the Polar Regions. In that sense, the 
topographical application of this semi-empirical criterion with 
4 parameters (W, M, S and H) can produce much proper 
results against the common modern 2-parameter empirical 
criteria, almost as accurate as the complicated theoretical 
model. With the analytical approach explained herein, the 
implementation of a very fast yet acute visibility map 
generator has been demonstrated.  

In general, the application of analytic approach can speed 
up any map generation software, whereas the introduction of 
topography would contribute to the accuracy and reliability of 
crescent visibility algorithms. 

8. DISCUSSION 

In this section, it will first be analyzed, how a stellar 
visibility solution can be applied to the special case of lunar 
detection. A stellar model for twilight, based on a large 
observational dataset [19], asserts that the limiting Sun 
elevation can be calculated as7: 

S = −2.65 − 1.23 * m - ∆h 

Here, m is the apparent magnitude of the celestial object, 
which has a logarithmic scale of base 2.5. This equation, 
valid for 0° > S > −7.7°, implies that the sky brightness is 
tripled for every degree increase of the Sun elevation. But 
during twilight, the luminosity alters also with the azimuth; 
the closer to the Sun, the brighter will be the sky. As such, ∆h 
denotes the extra Sun depression, which will be necessary for 
the objects horizontally near to the Sun. The aforementioned 
model offers a linear gradient, beginning from DAZ = 58° 
and incrementing by 0.0338° for every degree decrease of 
DAZ. The model exerts this correction for up to DAZ = 0°; 
though it was verified for DAZ > 20°. We evaluate that the 
sky brightness remains nearly constant when the object is in 
the vicinity of the Sun; therefore we will limit this correction 
at DAZ = 10°, such that:  

∆h = 0.0338 * (58 – max(DAZ, 10)) 

The model can furthermore be improved in terms of a 
daylight extension (S > 0°). The sky brightness loses its 
steepness as the Sun elevates and practically becomes flat 
after S > 5°. The following term is offered for this correction: 

S1 = S + 2
S-2

 

                                                           

7 The original constant was −2.47 for an extinction coefficient k = 0.25 and 
a sight height H = 0.18 km, which has been adjusted for k = 0 and H = 0. 



Regarding the Moon, m is a function of the elongation 
ARCL, as follows [11]: 

m0 = -12.73 + 0.026*(180-ARCL) + 4*10
-9
*(180-ARCL)

4
 

Nevertheless, this value cannot be directly inserted into the 
model equation, since the lunar crescent, unlike the stars, is 
not a point source; it is rather a curved line. The perceived 
brightness of a thin crescent with W < 5’ (corner angle for the 
visual limit), will diminish proportional to its width. On a 
logarithmic magnitude scale, the following modification is 
hence necessary: 

m = m0 + 2.5 * log(5 / W) 

This stellar model, adapted for lunar visibility as explained 
above, has been tested against the simple alternative 
stipulated by Özlem, which is: 

 S2 = 6 * √W − 4.9 

For 0.25’ > W > 5’, the gap8 between the model (S1) and 
the Özlem’s criterion (S2) remains within ±0.25 (Table 2). 

W S1 S2 ∆ 

0.25 -6.12 -5.90 0.22 

0.5 -4.58 -4.66 -0.08 

1 -2.66 -2.90 -0.24 

1.5 -1.38 -1.55 -0.17 

2 -0.36 -0.41 -0.05 

3 1.35 1.49 0.14 

4 2.97 3.10 0.13 

5 4.73 4.52 -0.21 

 
Table 2 – Comparison of the Model with the Criterion 

We will next discuss the atmospheric extinction. The 
apparent brightness of a celestial body observed on Earth will 
be its brightness in the space multiplied by the extinction 
value. Extinction is a function of the optical air-mass and it is 
exponential in nature, such that its contribution can be added 
to the logarithmic magnitude value m: 

 m’ = m + k * F(z) 

Here, m stands for the apparent magnitude outside the 
atmosphere and k represents the Atmospheric Extinction 
Coefficient. F(z) denotes the air-mass (optical path length) 

                                                           

8 Atmospheric extinction at M = 2.5 is accounted in both calculations. 

quantity, which is a function the zenith angle z. In the stellar 
model, the following equation is chosen for F(z): 

F(z) = 1 / (cos(z) + 0.025 * e
-11*cos(z)

) 

z = 90.25 - M 

The zenith angle z is complementary to the Moon elevation 
M. We add 0.25° because the mid-crescent is roughly one 
radius lower than the center of the Moon. Özlem prefers to 
use a shorter substitute for F(z): 

-1.23 * k * F(z) = -0.28 / tan(M + 1.5) 

The both sides of the equation have the best match (±0.2) 
for k = 0.187. Thus, we may insert the extinction coefficient k 
into the Özlem’s criterion as the 5th parameter, such that9: 

V = -1.5 * k / tan(M + 1.5) 
    – max(min(S, 5), -10) + 6 * √min(W, 5) 
    + acos(6371/(6371+H)) - 4.9 

This compliance proves that the “best time” indeed occurs 
when M = 2.5, independent of the lag time, in contrary to 
Yallop, which can also be confirmed by heliacal visibility 
arcs (Figure 15) [11]. 

 

Figure 15 – Visibility Arc of Venus 

However, the slope calculations disclose that the best angle 
of visibility for M shifts when k changes; the correlation is 
indicated in Table 3. The results are in accordance with 
Sultan’s findings, who demonstrated that the optimum Moon 
elevation10 will be about 2° for k = 0.14 [17]. 

                                                           

9 The max term has been included for the deep-night (no-twilight) visibility. 

10 The Atmospheric Extinction Coefficient of k = 0.14 was not declared 
explicitly in his paper; it has been figured out by the ratios of extra-
atmospheric and ground-observed Moon luminance values. 



k 0.1 0.15 0.2 0.25 0.3 

Best Angle 1.4 2.1 2.6 3.1 3.6 

 
Table 3 – Extinction Coefficient & Best Angle    

When the Moon grows 20 times from W = 0.25’ to 5’, its 
m value changes from -5 to -8, implying a 16-fold increase. 
This means that the brightness remains roughly constant. But 
on the way from W = 5’ to 31’ (full moon) which is 6-fold, m 
differs by 4.7, namely 76-fold. This tells us that the full moon 
is 12 times brighter than the limiting thick crescent. This 
should result in different visibility levels between the thick 
crescent and a gibbous/full disc, which contradicts to the 
daytime observations by Özlem; he reports that the rise/set 
threshold elevations remain practically unchanged. Some 
discussion about this paradox is given below:  

The perception capability of the human eye is not the same 
for different shapes of an object with same size and 
brightness. A study about the contrast thresholds of individual 
letters shows that the contrast sensitivity of similarly 
identifiable big letters differs considerably near the visual 
acuity limit; for identification of large letters, presence of 
higher object frequencies (edges) is more discriminative [20]. 
A crescent with sharp lips & tips will have a higher sensitivity 
than a soft circular full moon. Below are displayed the high & 
low contrast moon pictures of 5’, 20’ and 30’ width (Figure 
16, left to right). Though the full moon looks much brighter 
than the crescent in high contrast (night), the perceptibility 
just equals in case of very poor contrast (daytime): 

 

 

Figure 16 – High & Low Contrast Moon Views 

Since the discrimination of the human eye is based on 
sharp contrast changes at the rims, the visibility seems to be 
indifferent for W > 5’. In fact, it is really not possible to 
hardly discern the brighter middle of a gibbous during its 
rise/set in daytime, without first to distinguish it at its outer 
circular border. 
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APPENDIX 

In this section are listed the simplified formulae of the astronomical parameters necessary for the calculation of the crescent 
visibility. 

SUN: 

Greenwich Mean Sidereal Time: GMST = 280.461° + 360.98564737° * d 

Mean Longitude:   L0s = 280.466° +   0.98564737° * d 

Mean Anomaly:   Ms = 357.529° +   0.98560028° * d 

True Longitude:   Ls = L0s + 1.914° * sin(Ms) + 0.02° * sin(2 * Ms) 

Obliquity of the Ecliptic:  ε = 23.43929° - 0.000000356° * d 

Right Ascension:   αs = atan(sin(Ls)*cos(ε) / cos(Ls)) 

Declination:    δs = asin(sin(ε) * sin(Ls)) 

Local Hour Angle:   ωs = GMST – αs + ℓ 

Local Azimuth:   as = -atan(sin(ωs) / (cos(φ)*tan(δs)-sin(φ)*cos(ωs))) 

Local Elevation:   es = sin(cos(ωs)*cos(δs)*cos(φ)+sin(δs)*sin(φ)) 

MOON: 

Mean Elongation:   D = 117.850° + 12.19074911° * d 

Mean Anomaly:   Mm = 134.963° + 13.06499295° * d 

Argument of Latitude:   F =  93.272° + 13.22935024° * d 

Ecliptic Longitude:   Lm = 218.316° + 13.17639647° * d 
     +  6.2888° * sin(Mm) 
     +  1.2740° * sin(2 * D - Mm) 
     +  0.6583° * sin(2 * D) 
     +  0.2136° * sin(2 * Mm) 
     -  0.1851° * sin(Ms) 
     -  0.1143° * sin(2 * F) 
     +  0.0588° * sin(2 * D – 2 * Mm) 
     +  0.0571° * sin(2 * D – Ms - Mm) 
     +  0.0533° * sin(2 * D + Mm) 
     +  0.0458° * sin(2 * D - Ms) 
     -  0.0409° * sin(Ms - Mm) 
     -  0.0347° * sin(D) 
     -  0.0304° * sin(Ms + Mm) 
     +  0.0153° * sin(2 * D – 2 * F) 
     -  0.0125° * sin(Mm + 2 * F) 
     +  0.0110° * sin(Mm - 2 * F) 

Ecliptic Latitude:   βm =          +  5.1281° * sin(F) 
     +  0.2806° * sin(Mm + F) 
     +  0.2777° * sin(Mm - F) 
     +  0.1732° * sin(2 * D - F) 
     +  0.0554° * sin(2 * D - Mm + F) 
     +  0.0463° * sin(2 * D - Mm - F) 
     +  0.0326° * sin(2 * D + F) 



Geocentric Distance [Mm]: R0 = 385.0006 
     - 20.9054 * cos(Mm) 
     -  3.6991 * cos(2 * D - Mm) 
     -  2.9560 * cos(2 * D) 
     -  0.5699 * cos(2 * Mm) 
     +  0.2462 * cos(2 * D – 2 * Mm) 
     -  0.2046 * cos(2 * D - Ms) 
     -  0.1707 * cos(2 * D + Mm) 
     -  0.1521 * cos(2 * D – Ms - Mm) 
     -  0.1296 * cos(Ms - Mm) 
     +  0.1087 * cos(D) 
     +  0.1048 * cos(Ms + Mm) 
     +  0.0797 * cos(Mm - 2 * F) 
     +  0.0489 * cos(Ms) 

Topocentric Distance [Mm]:  R = R0 - 6.371 * sin(em) 

Right Ascension:   αm = atan((sin(Lm)*cos(ε)-tan(βm)*sin(ε)) / cos(Lm)) 

Declination:    δm = asin(sin(βm)*cos(ε) + cos(βm)*sin(ε)*sin(Lm)) 

Local Hour Angle:   ωm = GMST – αm + ℓ 

Local Azimuth:   am = -atan(sin(ωm) / (cos(φ)*tan(δm)-sin(φ)*cos(ωm))) 

Local Elevation:   em = sin(cos(ωm)*cos(δm)*cos(φ)+sin(δm)*sin(φ)) 

Elevation corrected for Parallax [°]: em’ = em – cos(em) * 365 / R 

Phase:    P = Lm - Ls 

Arc of Light:    ARCL = acos(cos(P) * cos(βm)) 

Illumination:    I = (1 – cos(ARCL)) / 2 

Crescent Width [arc-min]:  W = 11950 * I / R; 

 

 

Where: 

     d:  Time elapsed (in days) since 01/01/2000, 12:00 GMT 

     φ:  Latitude of location 

     ℓ:  Longitude of location 

 


